You are given a 0-indexed 2D integer matrix grid of size 3 * 3, representing the number of stones in each cell. The grid contains exactly 9 stones, and there can be multiple stones in a single cell.
In one move, you can move a single stone from its current cell to any other cell if the two cells share a side.
Return the minimum number of moves required to place one stone in each cell.
Example 1:
Input: grid = [[1,1,0],[1,1,1],[1,2,1]]
Output: 3
Explanation: One possible sequence of moves to place one stone in each cell is:
1- Move one stone from cell (2,1) to cell (2,2).
2- Move one stone from cell (2,2) to cell (1,2).
3- Move one stone from cell (1,2) to cell (0,2).
In total, it takes 3 moves to place one stone in each cell of the grid.
It can be shown that 3 is the minimum number of moves required to place one stone in each cell.
Example 2:
Input: grid = [[1,3,0],[1,0,0],[1,0,3]]
Output: 4
Explanation: One possible sequence of moves to place one stone in each cell is:
1- Move one stone from cell (0,1) to cell (0,2).
2- Move one stone from cell (0,1) to cell (1,1).
3- Move one stone from cell (2,2) to cell (1,2).
4- Move one stone from cell (2,2) to cell (2,1).
In total, it takes 4 moves to place one stone in each cell of the grid.
It can be shown that 4 is the minimum number of moves required to place one stone in each cell.
Constraints:
grid.length == grid[i].length == 3
0 <= grid[i][j] <= 9
Sum of grid is equal to 9.
Intuition
Here BFS wont work, as stone collection is dependent on other
So we use Recursion and try all ways