2369. Check if There is a Valid Partition For The Array
Problem Statement
You are given a 0-indexed integer array nums
. You have to partition the array into one or more contiguous subarrays.
We call a partition of the array valid if each of the obtained subarrays satisfies one of the following conditions:
The subarray consists of exactly
2
equal elements. For example, the subarray[2,2]
is good.The subarray consists of exactly
3
equal elements. For example, the subarray[4,4,4]
is good.The subarray consists of exactly
3
consecutive increasing elements, that is, the difference between adjacent elements is1
. For example, the subarray[3,4,5]
is good, but the subarray[1,3,5]
is not.
Return true
if the array has at least one valid partition. Otherwise, return false
.
Example 1:
Input: nums = [4,4,4,5,6]
Output: true
Explanation: The array can be partitioned into the subarrays [4,4] and [4,5,6].
This partition is valid, so we return true.
Example 2:
Input: nums = [1,1,1,2]
Output: false
Explanation: There is no valid partition for this array.
Constraints:
2 <= nums.length <= 105
1 <= nums[i] <= 106
Intuition
Just input the three given conditions in recursion and memoize
Links
https://leetcode.com/problems/check-if-there-is-a-valid-partition-for-the-array/description/
Video Links
Approach 1:
Memoization
class Solution {
public:
bool find_ans(vector<int>& nums, int index, vector<int> &dp){
if(index == nums.size())
return true;
if(dp[index] != -1)
return dp[index];
if(index+1< nums.size() and nums[index] == nums[index+1]){
if( find_ans(nums, index+2, dp) )
return dp[index] = true;
if(index+2< nums.size() and nums[index] == nums[index+2])
if( find_ans(nums, index+3, dp) )
return dp[index] = true;
}
if(index+2 < nums.size() and nums[index] == nums[index+1]-1 and nums[index] == nums[index+2]-2){
if( find_ans(nums, index+3, dp) )
return dp[index] = true;
}
return dp[index] = false;
}
bool validPartition(vector<int>& nums) {
int n = nums.size();
vector<int> dp(n, -1);
return find_ans(nums, 0, dp);
}
};
Approach 2:
Approach 3:
Approach 4:
Similar Problems
Last updated