You are given an integer array prices where prices[i] is the price of a given stock on the ith day.
On each day, you may decide to buy and/or sell the stock. You can only hold at most one share of the stock at any time. However, you can buy it then immediately sell it on the same day.
Find and return the maximum profit you can achieve.
Example 1:
Input: prices = [7,1,5,3,6,4]
Output: 7
Explanation: Buy on day 2 (price = 1) and sell on day 3 (price = 5), profit = 5-1 = 4.
Then buy on day 4 (price = 3) and sell on day 5 (price = 6), profit = 6-3 = 3.
Total profit is 4 + 3 = 7.
Example 2:
Input: prices = [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Total profit is 4.
Example 3:
Input: prices = [7,6,4,3,1]
Output: 0
Explanation: There is no way to make a positive profit, so we never buy the stock to achieve the maximum profit of 0.
Constraints:
1 <= prices.length <= 3 * 104
0 <= prices[i] <= 104
Intuition
Traverse and if i - i-1 th index gives profit, then take it
Links
Video Links
Approach 1:
Iterate over array
C++
class Solution {
public:
int maxProfit(vector<int>& prices) {
int profit = 0;
for(int i=1; i<prices.size(); i++){
if( prices[i]-prices[i-1] >0 )
profit += prices[i]-prices[i-1];
}
return profit;
}
};
Approach 2:
Memoization
Maintained two states- index, buy/sell
If buy,
two cases, buy/dont buy change flag accordingly
else if sell
two cases, Sell/Not sell
C++
class Solution {
public:
int find_ans(vector<int>& prices, int index, bool buy, vector<vector<int>> &dp){
if(index == prices.size())
return 0;
if(dp[index][buy] != -1)
return dp[index][buy];
int profit;
if(buy){
profit = max ( -prices[index] + find_ans(prices, index+1, false, dp),
find_ans(prices, index+1, true, dp) );
/*
If buy,
two cases, buy/dont buy change flag accordingly
else if sell
two cases, Sell/Not sell
*/
}
else{
profit = max( prices[index] + find_ans(prices, index+1, true, dp) ,
find_ans(prices, index+1, false, dp) );
}
return dp[index][buy] = profit;
}
int maxProfit(vector<int>& prices) {
int n = prices.size();
vector<vector<int>> dp (n, vector<int>(2,-1));
return find_ans(prices, 0, true, dp);
}
};
Approach 3:
Tabulation
C++
class Solution {
public:
int maxProfit(vector<int>& prices) {
int n = prices.size();
vector<vector<int>> dp (n+1, vector<int>(2,0));
//Base Case, No need here just added
dp[n][0] = dp[n][1] = 0;
for(int index=n-1; index>=0; index--){
for(int buy=0; buy<=1; buy++){
int profit;
if(buy)
profit = max ( -prices[index] + dp[index+1][0], dp[index+1][1] );
else
profit = max( prices[index] + dp[index+1][1] ,dp[index+1][0] );
dp[index][buy] = profit;
}
}
return dp[0][1];
}
};
Approach 4:
Space Optimization
C++
class Solution {
public:
int maxProfit(vector<int>& prices) {
int n = prices.size();
vector<int> prev(2,0), cur(2,0);
//Base Case, No need here just added
cur[0] = cur[1] = 0;
for(int index=n-1; index>=0; index--){
for(int buy=0; buy<=1; buy++){
int profit;
if(buy)
profit = max ( -prices[index] + cur[0], cur[1] );
else
profit = max( prices[index] + cur[1] ,cur[0] );
prev[buy] = profit;
}
cur = prev;
}
return prev[1];
}
};