1043. Partition Array for Maximum Sum
Problem Statement
Given an integer array arr
, partition the array into (contiguous) subarrays of length at most k
. After partitioning, each subarray has their values changed to become the maximum value of that subarray.
Return the largest sum of the given array after partitioning. Test cases are generated so that the answer fits in a 32-bit integer.
Example 1:
Input: arr = [1,15,7,9,2,5,10], k = 3
Output: 84
Explanation: arr becomes [15,15,15,9,10,10,10]
Example 2:
Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4
Output: 83
Example 3:
Input: arr = [1], k = 1
Output: 1
Constraints:
1 <= arr.length <= 500
0 <= arr[i] <= 109
1 <= k <= arr.length
Intuition
Parition using front and solve for the right part
Just like Palindrome partitioning 2
Links
https://leetcode.com/problems/partition-array-for-maximum-sum/description/
Video Links
https://www.youtube.com/watch?v=PhWWJmaKfMc&ab_channel=takeUforward
Approach 1:
Memoization
class Solution {
public:
int find_ans(vector<int>& arr, int k, int index, int n, vector<int> &dp){
if(index == arr.size())
return 0;
if(dp[index] != -1)
return dp[index];
int maxi = INT_MIN;
int len = 0;
int max_sum = INT_MIN;
for(int i=index; i< min(n,index+k); i++){
len++;
maxi = max(maxi, arr[i]);
int sum = len*maxi + find_ans(arr, k, i+1, n, dp);
max_sum = max(max_sum, sum);
}
return dp[index] = max_sum;
}
int maxSumAfterPartitioning(vector<int>& arr, int k) {
int n = arr.size();
vector<int> dp(n, -1);
return find_ans(arr, k, 0, n, dp);
}
};
Approach 2:
Tabulation
class Solution {
public:
int maxSumAfterPartitioning(vector<int>& arr, int k) {
int n = arr.size();
vector<int> dp(n+1, 0);
for(int index=n-1; index>=0; index--){
int maxi = INT_MIN;
int len = 0;
int max_sum = INT_MIN;
for(int i=index; i< min(n,index+k); i++){
len++;
maxi = max(maxi, arr[i]);
int sum = len*maxi + dp[i+1];
max_sum = max(max_sum, sum);
}
dp[index] = max_sum;
}
return dp[0];
}
};
Approach 3:
Approach 4:
Similar Problems
Last updated