823. Binary Trees With Factors
Problem Statement
Given an array of unique integers, arr
, where each integer arr[i]
is strictly greater than 1
.
We make a binary tree using these integers, and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of its children.
Return the number of binary trees we can make. The answer may be too large so return the answer modulo 109 + 7
.
Example 1:
Input: arr = [2,4]
Output: 3
Explanation: We can make these trees: [2], [4], [4, 2, 2]
Example 2:
Input: arr = [2,4,5,10]
Output: 7
Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].
Constraints:
1 <= arr.length <= 1000
2 <= arr[i] <= 109
All the values of
arr
are unique.
Intuition
Approach:
eg
2 4 5 20
1 1 1 1
Each at start have one way to make a tree,
But we find extra ways to find trees in the system,
like
for 20 -> 4,5
Number of occurences of 4,5 is 1 so 1*1 extra ways
so on we upadte extra ways for 20
Links
https://leetcode.com/problems/binary-trees-with-factors/?envType=daily-question&envId=2023-10-26
Video Links
https://www.youtube.com/watch?v=BRGz8ArRiPA&ab_channel=CodewithAlisha
Approach 1:
class Solution {
public:
int numFactoredBinaryTrees(vector<int>& arr) {
int n= arr.size();
sort(arr.begin(), arr.end());
unordered_map<int,long long int> mp;
for(auto &it: arr)
mp[it]++;
for(int i=0; i<n; i++){
long long int count=0;
for(int j=0; j<i; j++){
if(arr[i]%arr[j] == 0){
int num = arr[i]/arr[j];
if(mp.find(num) != mp.end()){
count += mp[arr[j]] * mp[num];
}
}
}
mp[arr[i]] += count;
}
long long int ans=0;
for(auto &it: mp){
ans += it.second;
}
return ans % int(1e9+7);
}
};
Approach 2:
Approach 3:
Approach 4:
Similar Problems
Last updated