class Solution {
public:
int find_ans(vector<int>& nums, int index, int prev, vector<vector<int>> &dp){
if(index<0)
return 0;
if(dp[index][prev] != -1)
return dp[index][prev];
int not_take = find_ans(nums, index-1, prev, dp);
int take = 0;
if(prev == nums.size() or nums[index] < nums[prev]){
take = 1 + find_ans(nums, index-1, index, dp);
}
return dp[index][prev] = max(take, not_take);
}
int lengthOfLIS(vector<int>& nums) {
int n = nums.size();
int prev = -1;
vector<vector<int>> dp(n, vector<int>(n+1,-1));
return find_ans(nums, n-1, n, dp);
}
};
Approach 2:
New Solution:
dp[i] represnts longest LIS count until index i
Go N^2 and check for all prevs before and add if less
Refer Stiver Video for more clarity
C++
class Solution {
public:
int lengthOfLIS(vector<int>& arr) {
int n = arr.size();
vector<int> dp(n, 1);
int maxi = 1;
for(int index=0; index<n; index++){
for(int prev=0; prev<index; prev++){
if(arr[prev] < arr[index]){
dp[index] = max (1+dp[prev], dp[index]);
}
}
maxi = max(maxi, dp[index]);
}
return maxi;
}
};
Approach 3:
Printing LIS
Slight modification to above code
Maintain hash containing info for backtracking
Basically,
When you get updation in dp array, means you got big LIS
Update in hash array as the index which gave that updation
So that when you finish, You will have a lastindex,
with which you can backtrack till the end