2050. Parallel Courses III

Problem Statement

You are given an integer n, which indicates that there are n courses labeled from 1 to n. You are also given a 2D integer array relations where relations[j] = [prevCoursej, nextCoursej] denotes that course prevCoursej has to be completed before course nextCoursej (prerequisite relationship). Furthermore, you are given a 0-indexed integer array time where time[i] denotes how many months it takes to complete the (i+1)th course.

You must find the minimum number of months needed to complete all the courses following these rules:

  • You may start taking a course at any time if the prerequisites are met.

  • Any number of courses can be taken at the same time.

Return the minimum number of months needed to complete all the courses.

Note: The test cases are generated such that it is possible to complete every course (i.e., the graph is a directed acyclic graph).

Example 1:

Input: n = 3, relations = [[1,3],[2,3]], time = [3,2,5]
Output: 8
Explanation: The figure above represents the given graph and the time required to complete each course. 
We start course 1 and course 2 simultaneously at month 0.
Course 1 takes 3 months and course 2 takes 2 months to complete respectively.
Thus, the earliest time we can start course 3 is at month 3, and the total time required is 3 + 5 = 8 months.

Example 2:

Constraints:

  • 1 <= n <= 5 * 104

  • 0 <= relations.length <= min(n * (n - 1) / 2, 5 * 104)

  • relations[j].length == 2

  • 1 <= prevCoursej, nextCoursej <= n

  • prevCoursej != nextCoursej

  • All the pairs [prevCoursej, nextCoursej] are unique.

  • time.length == n

  • 1 <= time[i] <= 104

  • The given graph is a directed acyclic graph.

Intuition

https://leetcode.com/problems/parallel-courses-iii/description/?envType=daily-question&envId=2023-10-18

Approach 1:

Approach 2:

Approach 3:

Approach 4:

Similar Problems

Last updated