Minimum Swaps to Sort
Problem Statement
Given an array of n distinct elements. Find the minimum number of swaps required to sort the array in strictly increasing order.
Example 1:
Input:
nums = {2, 8, 5, 4}
Output:
1
Explaination:
swap 8 with 4.
Example 2:
Input:
nums = {10, 19, 6, 3, 5}
Output:
2
Explaination:
swap 10 with 3 and swap 19 with 5.
Your Task: You do not need to read input or print anything. Your task is to complete the function minSwaps() which takes the nums as input parameter and returns an integer denoting the minimum number of swaps required to sort the array. If the array is already sorted, return 0.
Expected Time Complexity: O(nlogn) Expected Auxiliary Space: O(n)
Constraints: 1 ≤ n ≤ 105 1 ≤ numsi ≤ 106
Intuition
We intend to send all elements to the correct position
Hence, Maintain a array where we sort the array
MAintain a map which contains actual position of elements,
Can iterate over this sorted and maintain the indices
Now compare the actual array with sorted and start sending the elements to the
correct position
You notice we can send them in min swaps
Links
https://practice.geeksforgeeks.org/problems/minimum-swaps/1
Video Links
Approach 1:
Map and sorting
class Solution
{
public:
int minSwaps(vector<int>&nums){
vector<int> arr(nums);
unordered_map<int,int> mp;
sort(arr.begin(), arr.end());
int count = 0;
for(int i=0; i<arr.size(); i++)
mp[arr[i]] = i;
int left = 0;
int right = 0;
while(right < arr.size()){
if(arr[left] != nums[right]){
int pos = mp[nums[right]];
swap(nums[right], nums[pos]);
count++;
}
else{
left++;
right++;
}
}
return count;
}
};
Approach 2:
Approach 3:
Approach 4:
Similar Problems
Last updated