295. Find Median from Data Stream
Problem Statement
The median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value, and the median is the mean of the two middle values.
For example, for
arr = [2,3,4]
, the median is3
.For example, for
arr = [2,3]
, the median is(2 + 3) / 2 = 2.5
.
Implement the MedianFinder class:
MedianFinder()
initializes theMedianFinder
object.void addNum(int num)
adds the integernum
from the data stream to the data structure.double findMedian()
returns the median of all elements so far. Answers within10-5
of the actual answer will be accepted.
Example 1:
Input
["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]
Output
[null, null, null, 1.5, null, 2.0]
Explanation
MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1); // arr = [1]
medianFinder.addNum(2); // arr = [1, 2]
medianFinder.findMedian(); // return 1.5 (i.e., (1 + 2) / 2)
medianFinder.addNum(3); // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0
Constraints:
-105 <= num <= 105
There will be at least one element in the data structure before calling
findMedian
.At most
5 * 104
calls will be made toaddNum
andfindMedian
.
Intuition
MAintain two heaps and Balance them, For more refer Sliding Window Median
Links
https://leetcode.com/problems/find-median-from-data-stream/description/
Video Links
Approach 1:
class MedianFinder {
public:
priority_queue<int> max_heap;
priority_queue<int, vector<int>, greater<int>> min_heap;
void addNum(int num) {
if(max_heap.empty() or num <= max_heap.top())
max_heap.push(num);
else
min_heap.push(num);
if(max_heap.size()+1 < min_heap.size()){
max_heap.push(min_heap.top());
min_heap.pop();
}
else if(min_heap.size()+1 < max_heap.size()){
min_heap.push(max_heap.top());
max_heap.pop();
}
}
double findMedian() {
if(max_heap.size() == min_heap.size())
return ((double)min_heap.top() + (double)max_heap.top()) / 2.0;
else if(max_heap.size() > min_heap.size())
return (double)max_heap.top();
return (double)min_heap.top();
}
};
Approach 2:
Self code
class MedianFinder {
public:
priority_queue<int> max_heap;
priority_queue<int, vector<int>, greater<int>> min_heap;
void balance(){
int a=max_heap.size(), b=min_heap.size();
if(a==b or a==1+b or b==1+a)
return ;
else if(b>a and b!=1+a){
int temp = min_heap.top();
min_heap.pop();
max_heap.push(temp);
}
else if(a>b and a!= 1+b){
int temp = max_heap.top();
max_heap.pop();
min_heap.push(temp);
}
}
void addNum(int num) {
if(max_heap.size() == 0 or min_heap.size() == 0)
max_heap.push(num);
else if(num < max_heap.top()){
max_heap.push(num);
}
else
min_heap.push(num);
balance();
}
double findMedian() {
int a=max_heap.size(), b=min_heap.size();
// return 0;
if(a == b)
return (max_heap.top() + min_heap.top() )/ 2.0;
else if(a > b)
return max_heap.top();
return min_heap.top();
}
};
Approach 3:
Approach 4:
Similar Problems
Last updated